Acinospesigenin-A, -B, and -C: Three New Triterpenoids from Phytolacca acinosa

Summon Koul, T. K. Razdan,* and C. S. Andotra
Department of Chemistry, University of J ammu, Ambedkar Road, J ammu-180006, India

Received February 12, 2003

Abstract

Three new triterpenoids, designated as acinospesigenin-A (1), -B (2), and -C (3), isolated from the berries of Phytol acca acinosa, have been characterized as 3β-acetoxy-11 $\alpha, 23$-dihydroxytaraxer-14-en-28-oic acid, ol ean-12-en-23-al-2 $\beta, 3 \beta$-di hydroxy-30-methoxycarbonyl-28-oic acid and olean-12-en-23-al-2 $\beta, 3 \beta, 11 \alpha$-tri-hydroxy-30-methoxycarbonyl-28-oic acid, respectively. The compounds have shown antiedemic activity ($\mathrm{LD}_{50} 10-15 \mathrm{mg} / \mathrm{kg}$ mass) in albino rats.

Like Phytolacca americana, ${ }^{1}$ Phytol acca acinosa Roxb. (Phytol accaceae) ${ }^{2}$ is reputed for its antirheumatic, hypoglycemic, and antiedemic properties. Previously, the plant has been shown to produce polyoxygenated β-amyrin triterpenoids, ${ }^{3-6}$ some of which have marked antiedemic and anticancer activity. ${ }^{7}$ A reinvestigation of the shade-dried berries of the plant led to the isolation of 3-acetylmyricadiol, ${ }^{8}$ epitaraxerol, ${ }^{9}$ and three new triterpenoids, designated as acinospesigenin-A (1), -B (2), and -C (3), whose structural elucidation are described herein.

	\mathbf{R}^{1}	\mathbf{R}^{2}	\mathbf{R}^{3}
$\mathbf{1}$	H	H	H
$\mathbf{4}$	Ac	Ac	Me

	$\mathbf{R}^{\mathbf{1}}$	$\mathbf{R}^{\mathbf{2}}$	$\mathbf{R}^{\mathbf{3}}$	$\mathbf{R}^{\mathbf{4}}$
$\mathbf{2}$	H	H	CHO	H
3	H	H	CHO	OH

Acinospesigenin-A, 1, $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{6}$, was shown to carry a secondary acetoxyl [$\nu_{\text {max }}=1730 \mathrm{~cm}^{-1}, \delta=2.03$ (3H, s), $\delta_{\mathrm{C}}=170.7,21.1$] at the usual $\mathrm{C}-3 \beta$ equatorial position

[^0]$\left[\delta=4.48(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}\right.$ aa $=7.0, \mathrm{~J}$ ae $\left.=4.2 \mathrm{~Hz}, \mathrm{H}-3), \delta_{\mathrm{c}}=80.6^{10}\right]$, a hydroxymethylene group [$\nu_{\max }=3560 \mathrm{~cm}^{-1}, \delta=3.80$, 3.86 (1 H each, $\mathrm{d}, \mathrm{J}=10.2 \mathrm{~Hz},-\mathrm{CH}_{2}-\mathrm{OH}$), $\delta_{\mathrm{C}}=66.3$ (C-23)],5,12 a trisubstituted double bond $\left[\nu_{\max }=1610,1240\right.$, $\left.840 \mathrm{~cm}^{-1}, \delta=5.45(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.0,8.0 \mathrm{~Hz}, \mathrm{H}-15)\right]$, of a taraxer-14-ene skeleton [$\delta_{\mathrm{C}}=157.5(\mathrm{C}-14), 118.6(\mathrm{C}-15)$], ${ }^{13}$ and a secondary equatorial hydroxyl $[\delta=4.02(1 \mathrm{H}, \mathrm{td}$, $\mathrm{J}_{\text {аа }}=10.0, \mathrm{~J}_{\text {ae }}=10.0, \mathrm{~J}_{\text {ae }}=6.0 \mathrm{~Hz}$), $\left.\delta_{\mathrm{C}}=69.5\right]$. The presence of a C-17 carboxylic group in 1 was evidenced from the IR spectral bands at $v_{\max }=3200-2995$ (br hump), 1700 cm^{-1}, the ${ }^{13} \mathrm{C}$ NMR signal at $\delta_{\mathrm{C}}=178.8$, and the facile loss of $45 \mathrm{amu}\left(\mathrm{CO}_{2} \mathrm{H}\right)$ from the molecular ion to give the ion peak at $\mathrm{m} / \mathrm{z} 485 .{ }^{11}$

The mass spectrum of $\mathbf{1}$ displayed RDA fragment ion peaks at $\mathrm{m} / \mathrm{z} 386$ (rings $A / B / C$) and 154 (ring E). 8,11 The base peak fragment at m/z 205 (ring A/B) resulted from the fission of ring C in the ($\mathrm{M}^{+}-\mathrm{HOAc}$) fragment ion. The ${ }^{1} \mathrm{H}$ NMR signal at $\delta=2.50(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=14.0,3.5,3.5 \mathrm{~Hz})$ was characteristic of the $\mathrm{C}-1$ equatorial proton in an $11 \alpha-$ oxygenated triterpenoid. ${ }^{9,16-18}$ The structure of $\mathbf{1}$ was supported by its easy acetylation and subsequent esterification to 4, whose spectral data were consistent with the assigned structure. ${ }^{6,12}$

The spectral characteristics (IR, ${ }^{1} \mathrm{H}$ NMR, MS, and ${ }^{13} \mathrm{C}$ NMR) of acinospesigenin-B, 2, $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{O}_{7}$, were close to phytolaccagenin, ${ }^{7}$ except that it displayed signals for an aldehyde function [$v_{\max }=1710 \mathrm{~cm}^{-1}, \delta=9.76(1 \mathrm{H}, \mathrm{s})$, $\delta_{\mathrm{C}}=206.2^{12}$], which was shown to be present in rings A / B by the RDA fragment ion peak at $\mathrm{m} / \mathrm{z} 238$ in its mass spectrum. This, together with the presence of only five tertiary methyls (Tables 1 and 2) and the downfield shift of the 24-methyl resonance signal [$\delta=1.27(3 \mathrm{H}, \mathrm{s})$], placed the aldehyde group at the 23α-equatorial position. On reduction with $\mathrm{NaBH}_{4}, 2$ gave phytolaccagenin ${ }^{5,7}$ (mp , $\mathrm{mmp}, \mathrm{co}-\mathrm{tl}$).
Acinospesigenin-C, 3, $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{O}_{8}$, resembled 2 in its spectral features. Its ${ }^{1} \mathrm{H}$ NMR spectrum contained an additional carbinylic proton signal at $\delta=4.63$ (1 H , dd, $\mathrm{J}=4.9,5.2 \mathrm{~Hz}, \mathrm{H}-11$), showing that it has an additional hydroxyl, which was shown to be at the C-11 α position by the characteristic $\mathrm{H}-1$ equatorial proton resonance signal at $\delta=2.56(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=14.0,3.5,3.5 \mathrm{~Hz})^{9,16-18}$ The mass fragmentation of $\mathbf{3}$ was consistent with 11-hydroxyolean-12-enes. ${ }^{11}$

Confirmation of the structures was achieved by the analysis of ${ }^{13} \mathrm{C}$ NMR spectra (Table 2); the chemical shifts were assigned after DEPT (135°) and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HETCOR experiments and comparison with the literature values.6,11-13

Table 1. ${ }^{1} \mathrm{H}$ NMR Shifts (δ, ppm) of Phytolacca acinosa Triterpenoids (200 and $250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (J in Hz)

	1	2	3	$4^{\text {a }}$
H-1 β	$\begin{aligned} & 2.50, \mathrm{dt}, \\ & \mathrm{~J}=14,3.5, \\ & 3.5 \end{aligned}$		$\begin{aligned} & 2.56, \mathrm{dt}, \\ & \mathrm{~J}=14,3.5, \\ & 3.5 \end{aligned}$	$\begin{aligned} & 2.47, \mathrm{dt} \\ & \mathrm{~J}=14,3.5, \\ & 3.5 \end{aligned}$
H-2		$\begin{aligned} & \text { 4.35, dd, } \\ & \mathrm{J}=4.2,3.5 \end{aligned}$	$\begin{aligned} & \text { 4.50, dd, } \\ & \mathrm{J}=4.3,3.4 \end{aligned}$	
H-3	$\begin{aligned} & 4.48, \mathrm{dd}, \\ & \mathrm{~J}=7,4.2 \end{aligned}$	$\begin{aligned} & 4.25, d, \\ & J=4.2 \end{aligned}$	$\begin{aligned} & 4.36, d, \\ & J=4.3 \end{aligned}$	$\begin{aligned} & 4.37, \mathrm{dd} \\ & \mathrm{~J}=7,4.2 \end{aligned}$
H-11	$\begin{aligned} & 4.02, \text { ddd, } \\ & J_{6}=10,10, \end{aligned}$		$\begin{aligned} & \text { 4.63, dd, } \\ & \mathrm{J}=4.9,5.2 \end{aligned}$	$\begin{aligned} & 4.23, \text { ddd, } \\ & J=10.1, \\ & 10.2,6 \end{aligned}$
H-12		$\begin{aligned} & 5.40, \mathrm{br} \mathrm{~d} \\ & \mathrm{~J}=4.0 \end{aligned}$	$\begin{aligned} & 5.56, d, \\ & J=4.9 \end{aligned}$	
H-15	$\begin{aligned} & 5.45, \mathrm{dd}, \\ & \mathrm{~J}=4,8 \end{aligned}$			$\begin{aligned} & 5.47, \mathrm{dd} \\ & \mathrm{~J}=4,8.2 \end{aligned}$
H-16	$\begin{aligned} & 2.25, \mathrm{dd}, \\ & \mathrm{~J}=6,3.5 \end{aligned}$			$\begin{aligned} & 2.23, \mathrm{dd}, \\ & \mathrm{~J}=6,3.5 \end{aligned}$
H-18		$\begin{aligned} & 2.65, \text { br d, } \\ & J=15.9 \end{aligned}$	$\begin{aligned} & 2.65, \text { br d, } \\ & J=15.9 \end{aligned}$	
H-23	$\begin{aligned} & \text { 3.80, 3.86, } \\ & \text { d each, } \\ & \mathrm{J}=10.2 \end{aligned}$	9.76, s	9.76, s	$\text { 4.01, } 4.12$ d each, $\mathrm{J}=10.2$
H-24	0.90, s	1.27, s	1.27, s	0.88, s
H-25	0.99, s	0.98, s	0.96, s	0.98, s
H-26	1.12, s	1.13, s	1.01, s	1.12, s
H-27	1.07, s	1.09, s	1.09, s	1.07, s
H-29	1.05, s	1.05, s	1.05, s	1.05, s
H-30	1.03, br s			1.03, s
H-31		3.70, s	3.69, s	3.71, s
2-OAc				
$3-\mathrm{OAc}$	2.03, s			2.05, s
23-OAc				2.14, s
11-OAc				2.08, s

a 250 MHz .
The compounds 1-3 were assessed for their antiedemic activity by standard procedures ${ }^{7,14,15}$ and compared to positive controls cortisone and predinisol one. Compounds 2 and $3\left(E D_{50}=10-15 \mathrm{mg} / \mathrm{kg}\right.$ mass) were more active than 1 ($E D_{50}=25 \mathrm{mg} / \mathrm{kg}$ mass) and were also more active than cortisone ($E D_{50}=30 \mathrm{mg} / \mathrm{kg}$ mass) and prednisolone ($E D_{50}=60 \mathrm{mg} / \mathrm{kg}$ mass).

Experimental Section

General Experimental Procedures. Melting points were determined on a Laborlux 12 PoLS microscope with a Mettler FP central processor and FP 82 HT hot stage and are uncorrected. $[\alpha]_{D}^{20}$ was measured on a Toshniawal polarimeter. IR spectra were recorded on KBr disks using a Perkin-

Elmer spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra at 200 and 250 MHz (Table 1) and ${ }^{13} \mathrm{C}$ NMR spectra at 50.32 MHz (Table 2) were recorded on Brucker instruments and HRMS at 70 eV on a J EOL mass spectrometer. The column chromatography was performed on silica gel, and TLC and preparative TLC (0.5 mm thick) were performed on silica gel G , using iodine and ceric ammonium sulfate as detecting agents on TLC. Water spray was used in preparative TLC for detecting zones as col orless opaque spots against a transparent background. The solvent systems used are given in parentheses.

Plant Material. The ripe berries of Phytolacca acinosa (vouch S. No. ARN 21, 05;73; Koul, 107, 5:73, Kashmir University) were collected from Kishtwar (J \& K State, India) during September 1999. A voucher specimen of the plant has also been deposited in the herbarium of the Department of Botany, University of J ammu.
Extraction and Isolation. The shade-dried and powdered berries (2 kg) were extracted with hot $90 \% \mathrm{EtOH}$. The extract (50 g) was concentrated, chilled, and filtered. The filtrate was freed from solvent and reextracted with $\mathrm{C}_{6} \mathrm{H}_{6}$. The $\mathrm{C}_{6} \mathrm{H}_{6}$ insol uble portion (20 g) was dissolved in EtOH and subjected to CC using graded solvent systems of $\mathrm{C}_{6} \mathrm{H}_{6}$-EtOAc and $\mathrm{EtOAc}-\mathrm{MeOH}$. The fractions (25 mL each) collected from the column were monitored by TLC, using $\mathrm{C}_{6} \mathrm{H}_{6}$-EtOAc (7:3), $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{CHCl}_{3}-\mathrm{MeOH}(7: 0.5: 3)$, and $\mathrm{CHCl}_{3}-\mathrm{MeOH}(9: 0.7)$ solvent systems. The TLC identical fractions were pool ed together and were screened for known compounds from the plant (35) by comparative TLC with reference to well-preserved and refrigerated authentic samples available from one of the authors (T.K.R.). The fractions that contained unmatching compounds were obtained from the col umn with $\mathrm{C}_{6} \mathrm{H}_{6}-$ EtOAc (7:3) (Fr. No. 6, Fr. 6BE and Fr. No. 7, Fr. 7BE), EtOAc (Fr. No. 9, Fr. 9E), and MeOH (Fr. No. 15, Fr.15M). Fr. 6BE on rechromatography afforded acetylmyricadiol ${ }^{8}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right.$-EtOAc, 9:1) (20 mg) and epitaraxerol ${ }^{9}\left(\mathrm{C}_{6} \mathrm{H}_{6}-\right.$ EtOAc, $\left.7: 3\right)$, while as Fr .7 BE on further CC twice yielded acinospesigenin (40 mg$)^{6}$ $\left(\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{EtOAc}, 7: 3\right)$ and $\mathbf{1}(20 \mathrm{mg})\left(\mathrm{C}_{6} \mathrm{H}_{6}-E t O A c, 1: 1\right)$. Fr. 9E on rechromatography gave a mixture containing 2 with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(9: 1)$, from which $\mathbf{2}$ was recovered by preparativeTLC ($\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}, 7.5: 2.5, \mathrm{R}_{\mathrm{f}} 0.76\right)$. Fr. 15M on further chromatography gave $3\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 7: 3\right)$, which was purified by preparative TLC ($\mathrm{CHCl}_{3}-\mathrm{MeOH}, 9: 1, \mathrm{R}_{\mathrm{f}} 0.59$).

Acinospesigenin-A (1): colorless crystalline compounds $(40 \mathrm{mg}), \mathrm{mp} \mathrm{189-190}{ }^{\circ} \mathrm{C}\left(\mathrm{Me}_{2} \mathrm{CO}-\right.$ petroleum ether $) ; ~[\alpha]_{\mathrm{D}}^{20}$ $+47.1^{\circ}$ (c 0.01, MeOH); IR $v_{\max }=3560,3475,3200-2995$ (br hump, $\mathrm{CO}_{2} \mathrm{H}$), 1730, 1700, 1610, 1370, 1360, 1240, 1110, 840 cm^{-1}; HRMS m/z 530.3759 (calc for $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{6,} 530.3750$) (M^{+}), 514 (23), 488 (15), 470 (23), 454 (28), 424 (35), 409 (38), 386 (62), 374 (49), 368 (55), 360 (75), 327 (46), 316 (41), 309 (67), 308 (27), 283 (51), 282 (62), 270 (61), 267 (59), 252 (28), 249

Table 2. ${ }^{13} \mathrm{C}$ NMR Data of Phytolacca acinosa Triterpenoids (50.32 MHz) ($\delta \mathrm{c} \mathrm{ppm}, \mathrm{CDCl}_{3}$)

C	1	2	3	4	C	1	2	3	4
1	46.4	43.5	48.5	42.6	20	38.2	43.8	43.8	38.9
2	23.6	67.1	68.9	23.8	21	29.8	29.8	29.9	29.4
3	80.6	76.8	76.7	80.4	22	34.7	33.2	33.2	34.9
4	42.2	55.5	55.7	44.0	23	66.3	206.2	206.0	67.5
5	48.3	47.7	47.3	47.4	24	13.5	15.9	15.9	14.9
6	17.6	17.8	17.6	17.4	25	18.5	17.4	18.9	17.8
7	32.0	32.3	32.5	32.1	26	20.6	16.9	20.7	20.8
8	40.2	40.9	40.5	40.3	27	26.3	25.5	25.9	26.2
9	58.4	47.7	58.4	58.8	28	178.8	178.9	178.9	177.6
10	37.1	36.6	37.1	37.6	29	21.3	27.9	27.9	21.4
11	69.5	22.8	72.5	79.3	30	25.2	176.9	176.9	25.3
12	54.18	122.1	123.5	54.8	31		51.7	51.7	
13	41.2	143.7	145.2	41.2	2-OAc				
14	157.5	40.7	41.9	157.1	3-OAc	170.7,			170.1,
15	118.6	27.2	27.3	118.2		21.1			21.0
16	30.7	23.1	23.5	30.8	11-OAc				171.5,
17	45.8	45.1	45.1	45.5					23.7
18	50.2	41.7	42.2	50.5	28-COOMe				50.9
19	24.6	41.3	41.7	24.6	23-OAc				$\begin{array}{r} 170.8 \\ 21.3 \end{array}$

(25), 237 (64), 234 (73), 224 (80), 205 (100), 191 (70), 189 (89), 183 (83), 175 (66).
Acinospesigenin-B (2): col orless crystalline compound (36 mg), mp $224-225^{\circ} \mathrm{C}\left(\mathrm{MeOH}-\mathrm{CHCl}_{3}\right),[\alpha]_{\mathrm{D}}^{25}+36.2^{\circ}$ (c 0.01 , $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$); IR $v_{\max } 3540,3400-3000(\mathrm{br}), 2720,1730,1710,1680$, 1640, 1020, $840 \mathrm{~cm}^{-1}$; HRMS m/z at 530.3242 (calc for $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{O}_{7}, 530.3283$) (M+) (10), 485 (18), 467 (13), 466 (21), 453 (35), 407 (33), 392 (32), 292 (79), 291 (60), 273 (56), 246 (61), 238 (64), 232 (38), 223 (78), 209 (62), 191 (54), 187 (100), 175 (40), 173 (65), 147 (40), 108 (59).

Acinospesigenin-C (3): col orless crystalline compound (25 mg), mp $236-237^{\circ} \mathrm{C}\left(\mathrm{MeOH}-\mathrm{CHCl}_{3}\right) ;[\alpha]_{D}^{25}+48.9^{\circ}$ (c 0.01 , $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$); IR $v_{\text {max }} 3550,3400-3000$ (br), 1730, 1710, 1685, 1645, 1020, $850 \mathrm{~cm}^{-1}$; HRMS m/z at 546.3195 (calc for $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{O}_{8}$, $546.3188)\left(\mathrm{M}^{+}\right)(16), 510(13), 480(23), 462(37), 308(44), 278$ (81), 238 (60), 222 (52), 220 (63), 218 (78), 192 (66), 191 (69), 189 (100), 175 (93), 172 (73), 147 (43) 108 (52).

Diacetoxyacinospesigenin-A Methyl Ester, 4. Compound $\mathbf{1}(25 \mathrm{mg})$, in $\mathrm{MeOH}(10 \mathrm{~mL})$, was treated with EtOAc $(5 \mathrm{~mL}), \mathrm{Ac}_{2} \mathrm{O}(1 \mathrm{~mL}), \mathrm{CuNO}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{mg})$, and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, and the mixture was refluxed on a water bath for 4 h , diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, and extracted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ to obtain a monoacetate, $\mathrm{mp} 175-176^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right.$-petrol eum ether). The monoacetate (15 mg) in $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(2 \mathrm{~mL})$ and $\mathrm{Ac}_{2} \mathrm{O}(1 \mathrm{~mL})$ was heated on a water bath for 6 h . After usual workup and purification by preparative TLC $\left(\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{CHCl}_{3}, 19: 2\right)$ a diacetate, mp $161-162{ }^{\circ} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{MeOH}\right)$ was recovered. The diacetate in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was stirred with $\mathrm{CH}_{2} \mathrm{~N}_{2}-\mathrm{Et}_{2} \mathrm{O}$ for 3 h. After usual workup col orless crystalline needles of $4(5 \mathrm{mg})$, $\mathrm{mp} 165-166{ }^{\circ} \mathrm{C}$, were recovered: IR $\nu_{\max } 2980,1760,1730$, $1680,1640,1020,980,870 \mathrm{~cm}^{-1} ;$ HRMS m / z at 628.3976 (calc for $\mathrm{C}_{37} \mathrm{H}_{56} \mathrm{O}_{8}, 628.3968$) (M+) (8), 569 (33), 527 (39), 485 (20), 460 (49), 418 (38), 412 (19), 400 (43), 340 (53), 320 (38), 266 (53), 248 (61), 189 (100), 170 (75), 110 (81).

Reduction of 2. Compound $\mathbf{2}(10 \mathrm{mg})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was treated with $\mathrm{NaBH}_{4}(10 \mathrm{mg})$. The mixture was heated on a water bath for 4 h . After usual workup and crystallization from $\mathrm{MeOH}-\mathrm{C}_{6} \mathrm{H}_{6}$, phytolaccagenin $\left(6 \mathrm{mg}, \mathrm{mp} 317{ }^{\circ} \mathrm{C}\right.$, lit. 317 $\left.{ }^{\circ} \mathrm{C}\right)^{5,7}$ was obtained.

Antiedemic Activity. Edema was induced in the right hind paw of rats by injecting DMSO (2 mL). The left paw, used as a control, recei ved only the DMSO. Prednisol one and cortisone
were used as reference drugs. The sodium salt of 1-3 in saline was given to mice by subcutaneous injection. The paw volume was carefully measured by the standard procedure. ${ }^{7,16}$ The antiedemic activity was al so determined by the carrageenininduced edema using the method of Winter, Risely, and Nuss. ${ }^{15}$

Acknowledgment. The authors are thankful to Dr. S. K. Date (NCL, Pune) and Dr. V. K achroo (IIT, Delhi) for spectral facilities and Prof. Rajive Gupta, Head of Chemistry Department (J ammu University), for Iaboratory facilities. We remain indebted to Prof. R. S. Sharma (AllMS, New Delhi) for determining the biol ogical activity. One of us (S.K.) is thankful to CSIR, New Delhi, for a Senior Research Fellowship grant.

References and Notes

(1) Santillo, H. In Natural Healing Herbs; Dharmananda, S., Ed.; Crest Publishing House: India, 2001; pp 162-163.
(2) Chopra, R. N.; Chopra, I. C.; Verma, B. S. Supplementary to Glossary of Indian Medicinal Plants; CSIR Publ.: New Delhi, 1969; p 79.
(3) Razdan, T. K.; Harkar, S.; K achroo, V.; Koul, G. L. Phytochemistry 1982, 21, 2339-2342.
(4) Razdan, T. K.; Harkar, S.; Kachroo, V.; Koul, G. L.; Waight, E. S. Phytochemistry 1983, 22, 1797-1800.
(5) Harkar, S.; Razdan, T. K.; Waight, E. S. Phytochemistry 1984, 12, 2893-2898.
(6) Spengel, S.; Schaffner, W. Planta Med. 1990, 56, 284-286.
(7) Woo, W. S. Chemistry and Pharmacol ogy of Phytolacca americana; Monograph, University of Seoul, 1978.
(8) Woo, W. S.; K ang, S. S. Phytochemistry 1985, 24, 116-117.
(9) Tanaka, R.; Matsunaga, S. Phytochemistry 1988, 27, 3578-3584.
(10) J . de Pascual, T.; Urones, J . G.; Marcos, I. S.; Basabe, P.; Cuadrado, J . S.; Moro, R. F. Phytochemistry 1987, 26, 1767-76.
(11) Budzikiewicz, H.; Djerassi, C.; Williams, H. Interpretation of Mass Spectra of Natural Products; Holden-Day: New York, 1975.
(12) Tori, S. S.; Shimako, A.; Tomito, Y. Tetrahedron 1974, 48, 4227-30.
(13) Mahato, S. B.; Kundu, A. P. Phytochemistry 1994, 37, 1517.
(14) Winter, C. A.; Risley, E. A.; Nuss, G. W. Procd. Soc. Exp. Biol. Med. 1962, III, 544.
(15) Turner, R. A. Screening Methods In Pharmacology; Academic Press: London, 1965; p 152.
(16) Garcia-Alvarez, M. C.; Savona, G.; Rodriguez, B. Phytochemi stry 1981, 20, 481-483.
(17) Williams, D. H.; Bhaccha, N. S.; Djerassi, C. J. Am. Chem. Soc. 1963, 85, 2810-2813.
(18) Ahmed, V. U.; Bano, S.; Voelter, W.; Fuchs, W. Tetrahedron Lett. 1981, 20, 1715-1718.

NP030070U

[^0]: * Corresponding author. E-mail: tk_razdan@rediff mail.com.

